题目内容
6.解下列方程组:(1)$\left\{\begin{array}{l}x-y=3\\ 3x-8y=14\end{array}\right.$
(2)$\left\{\begin{array}{l}\frac{x+y}{2}-\frac{y}{3}=-1\\ 2x-3y=7\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x-y=3①}\\{3x-8y=14②}\end{array}\right.$,
①×3-②得:5y=-5,即y=-1,
把y=-1代入①中,得x=2,
则方程组的解为$\left\{\begin{array}{l}x=2\\ y=-1\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x+y=-6①}\\{2x-3y=7②}\end{array}\right.$,
①×3+②得:11x=-11,即x=-1,
把x=-1代入①得:y=-3,
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=-3}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
16.下列计算正确的是( )
| A. | $\sqrt{2}×\sqrt{3}=6$ | B. | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | C. | $3\sqrt{2}$-$\sqrt{2}$=$\sqrt{5}$ | D. | $\sqrt{6}÷\sqrt{2}=\sqrt{3}$ |
14.下列各式中是二次根式的是( )
| A. | $\root{3}{8}$ | B. | $\sqrt{-1}$ | C. | $\sqrt{2}$ | D. | $\sqrt{x}$(x<0) |
18.已知xy2=-2,则-xy(x2y5-xy3-y)的值为( )
| A. | 2 | B. | 6 | C. | 10 | D. | 14 |
15.下列二次根式中最简根式是( )
| A. | $\sqrt{9}$ | B. | $\sqrt{7}$ | C. | $\sqrt{20}$ | D. | $\sqrt{\frac{1}{3}}$ |