已知=0,则a+b=__________.

1 【解析】∵a2+4a+4+|b-3|=0,∴(a+2)2+|b-3|=0,∴a+2=0,b-3=0,∴a=-2,b=3,∴a+b=1, 故答案为:1.

在直角坐标系中,将点P(-3,2)向沿y轴方向向上平移4个单位长度后,得到的点坐标为( )

A. (-3,6) B. (1,2) C. (-7,2) D. (-3,-2)

A 【解析】因为点沿y轴向上移动,横坐标不变,纵坐标加上平移单位,将点P(-3,2)向沿y轴方向向上平移4个单位长度后,得到的点坐标为(-3,6),故选A.

二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为(  )

A. -3 B. 3 C. -6 D. 9

B 【解析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为-3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可. 【解析】 ∵抛物线的开口向上,顶点纵坐标为-3, ∴a>0, =-3,即b2=12a, ∵一元二次方程ax2+bx+m=0有实数根, ∴△=b2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3...

如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是(  )

A. -1<x<5 B. x>5 C. x<-1且x>5 D. x<-1或x>5

D 【解析】由图可知,抛物线的对称轴为直线x=2,与x轴的一个交点坐标为(5,0), ∴函数图象与x轴的另一交点坐标为(-1,0), ∴ax2+bx+c<0的解集是x<-1或x>5. 故选C.

5x2﹣25x2y的公因式为__.

5x2 【解析】∵5x2﹣25x2y=5x2(1-y), ∴5x2﹣25x2y的公因式为5x2.

下列各式从左到右的变形中,是因式分解的是( ).

A. x(a-b)=ax-bx B. x2-1+y2=(x-1)(x+1)+y2

C. y2-1=(y+1)(y-1) D. ax+bx+c=x(a+b)+c

C 【解析】A. 是整式的乘法,故A错误; B. 没把一个多项式转化成几个整式积,故B错误; C. 把一个多项式转化成几个整式积,故C正确; D. 没把一个多项式转化成几个整式积,故D错误; 故选:C.

下列图形中,不是轴对称图形的是( )

A. 有两个内角相等的三角形 B. 有一个内角为45°的直角三角形

C. 有两个内角分别为50°和80°的三角形 D. 有两个内角分别为55°和65°的三角形

D 【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形; B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形; D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形. 故选:D.

每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.

(1)水果商要把荔枝售价至少定为多少才不会亏本?

(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m= -10x+120,那么当销售单价定为多少时,每天获得的利润w最大?

(1)水果商要把荔枝售价至少定为6元/千克才不会亏本(2)当销售单价定为9元/千克时,每天可获利润w最大 【解析】分析:(1)设购进荔枝a千克,荔枝售价定为b元/千克时,水果商要不亏本,由题意建立不等式求出其值就可以了. (2)由(1)可知,每千克荔枝的平均成本为6元,再根据售价-进价=利润就可以表示出w,然后化为顶点式就可以求出最值. 本题解析: (1)设购进荔枝a千克,...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网