题目内容

19.将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.

分析 根据BC=DE和∠DEF=30°可求得∠BDC和∠BCD的值,根据∠ACB=45°即可求得∠DOC的值,即可解题.

解答 证明:∵在△BDC 中,BC=DB,
∴∠BDC=∠BCD.
∵∠DBE=30°,
∴∠BDC=∠BCD=75°,
∵∠ACB=45°,
∴∠DOC=30°+45°=75°.
∴∠DOC=∠BDC,
∴△CDO是等腰三角形.

点评 本题考查了等腰三角形的判定,等腰直角三角形的性质,本题中求证∠DOC=∠BDC是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网