题目内容

17.如图,菱形ABCD的边长为4,过点A,C作对角线AC的垂线,分别交CB和AD的延长线于点E,F,AE=3,则四边形AECF的周长为22.

分析 由菱形的性质得出AB=BC=4,AD∥BC,证明四边形AECF是平行四边形,得出CF=AE=3,AF=CE,再由角的互余关系求出∠BAE=∠E,得出BE=AB=4,求出CE,即可得出四边形AECF的周长.

解答 解:∵四边形ABCD是菱形,
∴AB=BC=4,AD∥BC,
∴AF∥CE,
∵AE⊥AC,CF⊥AC,
∴AE∥CF,
∴四边形AECF是平行四边形,
∴CF=AE=3,AF=CE,
∵AB=BC,
∴∠BAC=∠BCA,
∵AE⊥AC,
∴∠EAC=90°,
∴∠BAC+∠BAE=90°,∠BCA+∠E=90°,
∴∠BAE=∠E,
∴BE=AB=4,
∴CE=4+4=8,
∴四边形AECF的周长=2(AE+CE)=2(3+8)=22.
故答案为:22.

点评 本题考查了菱形的性质、平行四边形的判定与性质、等腰三角形的判定、平行四边形周长的计算;熟练掌握菱形的性质,并能进行推理论证与计算是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网