题目内容

15.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为(  )
A.28B.26C.25D.22

分析 如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.

解答 解:如图,由题意得:BM=MN(设为λ),CN=DN=3;
∵四边形ABCD为矩形,
∴BC=AD=9,∠C=90°,MC=9-λ;
由勾股定理得:λ2=(9-λ)2+32
解得:λ=5,
∴五边形ABMND的周长=6+5+5+3+9=28,
故选A.

点评 该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网