题目内容
15.a、b、c是同一平面内不重合的三条直线,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题是①②④(填写所有真命题的序号)分析 根据平行线的判定定理与性质对各小题进行逐一分析即可.
解答 解:①∵a∥b,a⊥c,∴b⊥c,是真命题;
②∵b∥a,c∥a,∴b∥c,是真命题;
③∵b⊥a,c⊥a,∴b∥c,故原命题是假命题;
④∵b⊥a,c⊥a,∴b∥c,是真命题.
故答案为:①②④.
点评 本题考查的是命题与定理,熟知在同一平面内垂直于同一条直线的两条直线互相平行是解答此题的关键.
练习册系列答案
相关题目
3.
如图,直线a、b被直线c所截,a∥b,∠1=35°,则∠2等于( )
| A. | 35° | B. | 55° | C. | 165° | D. | 145° |
7.一个扇形占其所在圆的面积的$\frac{1}{8}$,则该扇形圆心角是( )
| A. | 225° | B. | 45° | C. | 60° | D. | 无法计算 |
5.一组数据3、4、x、1、4、3有唯一的众数3,则这组数据的中位数是( )
| A. | 3 | B. | 3.5 | C. | 4 | D. | 4.5 |