题目内容

3.阅读下面问题:$\frac{1}{1+\sqrt{2}}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}+\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
$\frac{1}{\sqrt{5}+2}$=$\frac{\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)}$$\sqrt{5}$-2,….
试求:(1)$\frac{1}{\sqrt{7}+\sqrt{6}}$=$\sqrt{7}$-$\sqrt{6}$  
(2)$\frac{1}{\sqrt{n+1}+\sqrt{n}}$(n为正整数)=$\sqrt{n+1}$-$\sqrt{n}$
  (3)根据你发现的规律,请计算:
($\frac{1}{{1+\sqrt{2}}}$+$\frac{1}{{\sqrt{2}+\sqrt{3}}}$+$\frac{1}{{\sqrt{3}+2}}$+…+$\frac{1}{{\sqrt{2015}+\sqrt{2016}}}$+$\frac{1}{{\sqrt{2016}+\sqrt{2017}}}$)×(1+$\sqrt{2017}$)的值.

分析 (1)(2)根据平方差公式把分母有理化即可求解;
(3)先分母有理化,再抵消法计算,再根据平方差公式计算即可求解.

解答 解:(1)$\frac{1}{\sqrt{7}+\sqrt{6}}$=$\frac{\sqrt{7}-\sqrt{6}}{(\sqrt{7}+\sqrt{6})(\sqrt{7}-\sqrt{6})}$=$\sqrt{7}$-$\sqrt{6}$  
(2)$\frac{1}{\sqrt{n+1}+\sqrt{n}}$
=$\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}$
=$\sqrt{n+1}$-$\sqrt{n}$;
  (3)($\frac{1}{{1+\sqrt{2}}}$+$\frac{1}{{\sqrt{2}+\sqrt{3}}}$+$\frac{1}{{\sqrt{3}+2}}$+…+$\frac{1}{{\sqrt{2015}+\sqrt{2016}}}$+$\frac{1}{{\sqrt{2016}+\sqrt{2017}}}$)×(1+$\sqrt{2017}$)
=($\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+…+$\sqrt{2016}$-$\sqrt{2015}$+$\sqrt{2017}$-$\sqrt{2016}$)×(1+$\sqrt{2017}$)
=($\sqrt{2017}$-1)×(1+$\sqrt{2017}$)
=2017-1
=2016.
故答案为:(1)$\sqrt{7}$-$\sqrt{6}$; (2)$\sqrt{n+1}$-$\sqrt{n}$.

点评 考查了分母有理化,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网