题目内容

4.已知α是锐角,cosα=$\frac{1}{3}$,则tanα的值是(  )
A.$\frac{\sqrt{3}}{10}$B.2$\sqrt{2}$C.3D.$\sqrt{10}$

分析 根据sin2α+cos2α=1,可得 sinα,根据正切函数与正弦函数、余弦函数的定义,可得答案.

解答 解:由sin2α+cos2α=1,α是锐角,cosα=$\frac{1}{3}$,得
sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{2\sqrt{2}}{3}$,
tanα=$\frac{sinα}{cosα}$=$\frac{\frac{2\sqrt{2}}{3}}{\frac{1}{3}}$=2$\sqrt{2}$,
故选:B.

点评 本题考查了同角三角函数关系,利用sin2α+cos2α=1,tanα=$\frac{sinα}{cosα}$是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网