题目内容

8.如图,矩形纸片ABCD中,AB=6,AD=10,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是2≤x≤6.

分析 利用极端原理求解:①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=34,即BP的最大值为4;根据上述两种情况即可得到BP的取值范围.

解答 解:如图:
①当F、D重合时,BP的值最小;
根据折叠的性质知:AF=PF=10;
在Rt△PFC中,PF=10,FC=6,则PC=8;
∴BP=xmin=10-8=2;
②当E、B重合时,BP的值最大;根据折叠的性质即可得到AB=BP=6,即BP的最大值为6.
故答案为:2≤x≤6.

点评 此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网