题目内容
15.在数学中,为了简便,记$\sum_{k=1}^{n}$k=l+2+…(n-1)+n
$\sum_{k=1}^{n}$(x+k)=(x+1)( x+2)+…(x+n)
(1)请你用以上记法表示:1+2+3+…+2016=$\sum_{k=1}^{2016}k$:
(2)化简:$\sum_{k=1}^{10}$(x-k)
(3)化简:$\sum_{k=1}^{3}$(x-k)( x-k-1)
(4)化简:$\sum_{k=1}^{2016}$(x-k)2-$\sum_{k=1}^{2015}$(x-k)2-20162.
分析 (1)根据题目中信息,可以解答本题;
(2)根据题意,可以化简$\sum_{k=1}^{10}$(x-k);
(3)根据题意,可以化简$\sum_{k=1}^{3}$(x-k)( x-k-1);
(4)根据题意,可以化简$\sum_{k=1}^{2016}$(x-k)2-$\sum_{k=1}^{2015}$(x-k)2-20162.
解答 解:(1)由题意可得,
1+2+3+…+2016=$\sum_{k=1}^{2016}k$,
故答案为:$\sum_{k=1}^{2016}k$;
(2)$\sum_{k=1}^{10}$(x-k)
=(x-1)+(x-2)+…+(x-10)
=10x-55;
(3)$\sum_{k=1}^{3}$(x-k)( x-k-1)
=(x-1)(x-1-1)+(x-2)(x-2-1)+(x-3)(x-3-1)
=(x-1)(x-2)+(x-2)(x-3)+(x-3)(x-4)
=x2-3x+2+x2-5x+6+x2-7x+12
=3x2-15x+20;
(4)$\sum_{k=1}^{2016}$(x-k)2-$\sum_{k=1}^{2015}$(x-k)2-20162
=(x-1)2+(x-2)2+…+(x-2015)2+(x-2016)2-[(x-1)2+(x-2)2+…+(x-2015)2]-20162
=(x-1)2+(x-2)2+…+(x-2015)2+(x-2016)2-(x-1)2-(x-2)2-…-(x-2015)2-20162
=(x-2016)2-20162
=x2-4032x.
点评 本题考查整式的混合运算,解题的关键是明确题意,找出所问题需要的条件.
练习册系列答案
相关题目