题目内容

12.如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求证:四边形PMAN是正方形;
(2)求证:EM=BN;
(3)若点P在线段AC上移动,其他不变,设PC=x,AE=y,求y关于x的解析式,并写出自变量x的取值范围.

分析 (1)由四边形ABCD是正方形,易得∠BAD=90°,AC平分∠BAD,又由PM⊥AD,PN⊥AB,即可证得四边形PMAN是正方形;
(2)由四边形PMAN是正方形,易证得△EPM≌△BPN,即可证得:EM=BN;
(3)首先过P作PF⊥BC于F,易得△PCF是等腰直角三角形,继而证得△APM是等腰直角三角形,可得AP=$\sqrt{2}$AM=$\sqrt{2}$(AE+EM),即可得方程$\sqrt{2}$-x=$\sqrt{2}$(y+$\frac{\sqrt{2}}{2}$x),继而求得答案.

解答 (1)证明:∵四边形ABCD是正方形,
∴∠BAD=90°,AC平分∠BAD,
∵PM⊥AD,PN⊥AB,
∴PM=PN,∠PMA=∠PNA=90°,
∴四边形PMAN是矩形,
∴四边形PMAN是正方形;

(2)证明:∵四边形PMAN是正方形,
∴PM=PN,∠MPN=90°,
∵∠EPB=90°,
∴∠MPE=∠NPB,
在△EPM和△BPN中,
$\left\{\begin{array}{l}{∠PMA=∠PNB=90°}\\{PM=PN}\\{∠MPE=∠NPB}\end{array}\right.$,
∴△EPM≌△BPN(ASA),
∴EM=BN;

(3)解:过P作PF⊥BC于F,如图所示:
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC=1,∠PCF=45°,
∴AC=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,△PCF是等腰直角三角形,
∴AP=AC-PC=$\sqrt{2}$-x,BN=PF=$\frac{\sqrt{2}}{2}$x,
∴EM=BN=$\frac{\sqrt{2}}{2}$x,
∵∠PAM=45°,∠PMA=90°,
∴△APM是等腰直角三角形,
∴AP=$\sqrt{2}$AM=$\sqrt{2}$(AE+EM),
即$\sqrt{2}$-x=$\sqrt{2}$(y+$\frac{\sqrt{2}}{2}$x),
解得:y=1-$\sqrt{2}$x,
∴x的取值范围为0≤x≤$\frac{\sqrt{2}}{2}$,
∴y=1-$\sqrt{2}$x(0≤x≤$\frac{\sqrt{2}}{2}$).

点评 此题属于四边形的综合题.考查了正方形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的判定与性质.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网