题目内容

11.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为(  )
A.$\frac{1}{3}$B.2$\sqrt{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{2\sqrt{2}}{3}$

分析 作直径CD,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC=∠CDO,等量代换即可.

解答 解:作直径CD,
在Rt△OCD中,CD=6,OC=2,
则OD=$\sqrt{C{D}^{2}-O{C}^{2}}$=4$\sqrt{2}$,
tan∠CDO=$\frac{OC}{OD}$=$\frac{\sqrt{2}}{4}$,
由圆周角定理得,∠OBC=∠CDO,
则tan∠OBC=$\frac{\sqrt{2}}{4}$,
故选:C.

点评 本题考查的是圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、熟记锐角三角函数的定义是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网