ÌâÄ¿ÄÚÈÝ
17£®Èçͼ1£¬SÊǾØÐÎABCDµÄAD±ßÉÏÒ»µã£¬µãEÒÔÿÃëkcmµÄËÙ¶ÈÑØÕÛÏßBS-SD-DCÔÈËÙÔ˶¯£¬Í¬Ê±µãF´ÓµãC³ö·¢µã£¬ÒÔÿÃë1cmµÄËÙ¶ÈÑØ±ßCBÔÈËÙÔ˶¯²¢ÇÒµãFÔ˶¯µ½µãBʱµãEÒ²Ô˶¯µ½µãC£®¶¯µãE£¬FͬʱֹͣÔ˶¯£®ÉèµãE£¬F³ö·¢tÃëʱ£¬¡÷EBFµÄÃæ»ýΪycm2£®ÒÑÖªyÓëtµÄº¯ÊýͼÏóÈçͼ2Ëùʾ£®ÆäÖÐÇúÏßOM£¬NPΪÁ½¶ÎÅ×ÎïÏߣ¬MNΪÏ߶Σ®ÔòÏÂÁÐ˵·¨£º¢ÙµãEÔ˶¯µ½µãSʱ£¬ÓÃÁË2.5Ã룬Ô˶¯µ½µãDʱ¹²ÓÃÁË4Ãë
¢Ú¾ØÐÎABCDµÄÁ½Áڱ߳¤ÎªBC=6cm£¬CD=4cm£»
¢Ûsin¡ÏABS=$\frac{\sqrt{3}}{2}$£»
¢ÜµãEµÄÔ˶¯ËÙ¶ÈΪÿÃë2cm£®ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¢Ù¢Ú¢Û | B£® | ¢Ù¢Û¢Ü | C£® | ¢Ù¢Ú¢Ü | D£® | ¢Ú¢Û¢Ü |
·ÖÎö ¢ÙÕýÈ·£¬¸ù¾ÝͼÏó¼´¿ÉÅжϣ®
¢ÚÕýÈ·£¬ÉèAB=CD=acm£¬BC=AD=bcm£¬Áгö·½³Ì×é¼´¿É½â¾öÎÊÌ⣮
¢Û´íÎó£¬ÓÉBS=2.5k£¬SD=1.5k£¬µÃ$\frac{BS}{SD}$=$\frac{5}{3}$£¬ÉèSD=3x£¬BS=5x£¬ÔÚRT¡÷ABSÖУ¬ÓÉAB2+AS2=BS2Áгö·½³ÌÇó³öx£¬¼´¿ÉÅжϣ®
¢ÜÕýÈ·£¬Çó³öBS¼´¿É½â¾öÎÊÌ⣮
½â´ð ½â£ºÓÉͼÏó¿ÉÖªµãEÔ˶¯µ½µãSʱÓÃÁË2.5Ã룬Ô˶¯µ½µãDʱ¹²ÓÃÁË4Ã룮¹Ê¢ÙÕýÈ·£®
ÉèAB=CD=acm£¬BC=AD=bcm£¬
ÓÉÌâÒ⣬$\left\{\begin{array}{l}{\frac{1}{2}•a•£¨b-2.5£©=7}\\{\frac{1}{2}•a£¨b-4£©=4}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}{a=4}\\{b=6}\end{array}\right.$£¬
ËùÒÔAB=CD=4cm£¬BC=AD=6cm£¬¹Ê¢ÚÕýÈ·£¬
¡ßBS=2.5k£¬SD=1.5k£¬
¡à$\frac{BS}{SD}$=$\frac{5}{3}$£¬ÉèSD=3x£¬BS=5x£¬
ÔÚRT¡÷ABSÖУ¬¡ßAB2+AS2=BS2£¬
¡à42+£¨6-3x£©2=£¨5x£©2£¬
½âµÃx=1»ò-$\frac{13}{4}$£¨Éᣩ£¬
¡àBS=5£¬SD=3£¬AS=3£¬
¡àsin¡ÏABS=$\frac{AS}{BS}$=$\frac{3}{5}$¹Ê¢Û´íÎó£¬
¡ßBS=5£¬
¡à5=2.5k£¬
¡àk=2cm/s£¬¹Ê¢ÜÕýÈ·£¬
¹ÊÑ¡C£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Èñ½ÇÈý½Çº¯Êý¡¢¹´¹É¶¨Àí¡¢Èý½ÇÐÎÃæ»ý¡¢º¯ÊýͼÏóÎÊÌâµÈ֪ʶ£¬¶Á¶®Í¼ÏóÐÅÏ¢Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬Ñ§»áÉèδ֪ÊýÁз½³Ì×é½â¾öÎÊÌ⣬°ÑÎÊÌâת»¯Îª·½³Ìȥ˼¿¼£¬ÊÇÊýÐνáºÏµÄºÃÌâÄ¿£¬ÊôÓÚÖп¼Ñ¡ÔñÌâÖеÄѹÖáÌ⣮
| ÊÖ»úÐͺŠ| AÐÍ | BÐÍ | CÐÍ |
| ½ø¼Û£¨µ¥Î»£ºÔª/²¿£© | 900 | 1200 | 1100 |
| Ô¤ÊÛ¼Û£¨µ¥Î»£ºÔª/²¿£© | 1200 | 1600 | 1300 |
£¨2£©Çó³öyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©¼ÙÉèËù¹º½øÊÖ»úÈ«²¿ÊÛ³ö£¬×ۺϿ¼ÂǸ÷ÖÖÒòËØ£¬¸ÃÊÖ»ú¾ÏúÉÌÔÚ¹ºÏúÕâÅúÊÖ»ú¹ý³ÌÖÐÐèÁíÍâÖ§³ö¸÷ÖÖ·ÑÓù²1500Ôª£®
¢ÙÇó³öÔ¤¹ÀÀûÈóP£¨Ôª£©Óëx£¨²¿£©µÄº¯Êý¹ØÏµÊ½£»
£¨×¢£ºÔ¤¹ÀÀûÈóP=Ô¤ÊÛ×ܶî-¹º»ú¿î-¸÷ÖÖ·ÑÓã©
¢ÚÇó³öÔ¤¹ÀÀûÈóµÄ×î´óÖµ£¬²¢Ð´³ö´Ëʱ¹º½øÈý¿îÊÖ»ú¸÷¶àÉÙ²¿£®
| A£® | µÈÓÚÁã | B£® | µÈÓÚ1 | C£® | µÈÓÚ-1 | D£® | ûÓÐÒâÒå |