题目内容

如图,某湖中有一孤立小岛P,湖边有一条东西走向的观光小道,在小道的A处测得小岛P在北偏东51.5°方向上,在小道的B处测得小岛P在北偏西63.5°方向上,AB=80米.现决定从小岛架一座与观光小道垂直的小桥PD,请求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.
考点:解直角三角形的应用-方向角问题
专题:应用题
分析:设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.
解答:解:设PD=x,
∵PD⊥AB,
∴∠ADP=∠BDP=90°,
则AD=
x
tan38.5°
=
x
0.80
=
5x
4
,BD=
x
tan26.5°
=
x
0.5
=2x,
∵AD+BD=80,
5x
4
+2x=80,
解得:x≈24.6,
BD=2x≈49.2,
∴小桥PD的长约为25米,小桥距B约49米.
点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网