题目内容

11.如图,在三角形ABC中,CE平分∠ACB,CF平分∠ACD且EF∥BC交AC于点M,若EF=3,则CE2+CF2=36.

分析 根据角平分线的定义、外角定理推知∠ECF=90°,然后在直角三角形ECF中利用勾股定理求CE2+CF2的值即可.

解答 解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=$\frac{1}{2}$∠ACB,∠ACF=$\frac{1}{2}$∠ACD,即∠ECF=$\frac{1}{2}$(∠ACB+∠ACD)=90°,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=3,EF=6,
由勾股定理可知CE2+CF2=EF2=36,
故答案为36.

点评 本题考查了直角三角形的性质,平行线的性质,以及角平分线的定义,证明出△ECF是直角三角形是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网