题目内容

1.已知点A(10,5),B(50,5),则直线AB的位置特点是(  )
A.与x轴平行B.与y轴平行
C.与x轴相交,但不垂直D.与y轴相交,但不垂直

分析 设直线AB的解析式为y=kx+b,根据点A、B的坐标,利用待定系数法即可求出直线AB的解析式,再结合一次函数的图象即可得出结论.

解答 解:设直线AB的解析式为y=kx+b,
将点A(10,5)、B(50,5)代入y=kx+b中,
得:$\left\{\begin{array}{l}{5=10k+b}\\{5=50k+b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=0}\\{b=5}\end{array}\right.$,
∴直线AB的解析式为y=5,
∴直线AB∥y轴,直线AB⊥x轴.
故选B.

点评 本题考查了待定系数法求函数解析式以及一次函数的图象,解题的关键是利用待定系数法求出直线AB的解析式为y=5.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标,利用待定系数法求出直线解析式是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网