题目内容

如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F.
(1)若AB=4,BC=6,求EC的长;
(2)若∠F=55°,求∠BAE和∠D的度数.
考点:平行四边形的性质
专题:
分析:(1)利用平行四边形的性质以及平行线的性质得出∠2=∠3,进而得出AB=BE即可得出答案;
(2)利用平行线的性质以及三角形内角和定理得出即可.
解答:解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,∴∠1=∠2,
又∵∠1=∠3,
∴∠2=∠3,
∴AB=BE=4,
∴EC=BC-BE=6-4=2;

(2)∵AB∥CD,
∴∠3=∠F=55°,
∴∠1=∠3=55°,
在△ADF中,∠D=180°-∠1-∠F=70°.
点评:此题主要考查了平行四边形的性质以及平行线的性质等知识,熟练应用平行四边形的性质得出是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网