题目内容

18.已知方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx+2y=10}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,但杨岚同学在解该题时,看错了c,结果求出的解为$\left\{\begin{array}{l}{x=4}\\{y=9}\end{array}\right.$则a,b,c的值分别为(  )
A.5,-2,1B.5,-2,-1C.-5,-2,1D.-5,-2,-1

分析 把x=2,y=4方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx+2y=10}\end{array}\right.$得出2a+4b=2和2c+8=10,求出c的值,把$\left\{\begin{array}{l}{x=4}\\{y=9}\end{array}\right.$代入方程ax+by=2得出4a+9b=2,求出方程组$\left\{\begin{array}{l}{2a+4b=2}\\{4a+9b=2}\end{array}\right.$的解即可.

解答 解:把x=2,y=4代入方程组$\left\{\begin{array}{l}{ax+by=2}\\{cx+2y=10}\end{array}\right.$得:$\left\{\begin{array}{l}{2a+4b=2①}\\{2c+8=10②}\end{array}\right.$
解方程②得:c=1,
把$\left\{\begin{array}{l}{x=4}\\{y=9}\end{array}\right.$代入方程ax+by=2得:4a+9b=2,
解方程组$\left\{\begin{array}{l}{2a+4b=2}\\{4a+9b=2}\end{array}\right.$得:a=-5,b=-2,
即a=-5,b=-2,c=1,
故选C.

点评 本题考查了二元一次方程组的解,解二元一次方程组的应用,能得出关于a、b、c的方程组或方程是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网