题目内容

如图,在平行四边形ABCD中,CE平分∠BCD,交AB边于点E,EF∥BC,交CD于点F,点G是BC边的中点,连接GF,且∠1=∠2,CE与GF交于点M,过点M作MH⊥CD于点H.
(1)求证:四边形BCFE是菱形;
(2)若CH=1,求BC的长;
(3)求证:EM=FG+MH.
考点:菱形的判定与性质,全等三角形的判定与性质,平行四边形的性质
专题:
分析:(1)由在平行四边形ABCD中,EF∥BC,可得四边形BCFE是平行四边形,又由CE平分∠BCD,易得△BCE是等腰三角形,继而证得四边形BCFE是菱形;
(2)由∠1=∠2,可得∠ECF=∠2,即△CMF是等腰三角形,又由MH⊥CD,可得CF=2CH,继而求得BC的长;
(3)首先连接BC交CF于点O,易得△BCF是等边三角形,继而可得OM=MH,OE=FG,则可证得结论.
解答:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠1=∠ECF,
∵EF∥BC,
∴四边形BCFE是平行四边形,
∵CE平分∠BCD,
∴∠BCE=∠ECF,
∴∠BCE=∠1,
∴BC=BE,
∴四边形BCFE是菱形;

(2)∵∠1=∠ECF,∠1=∠2,
∴∠ECF=∠2,
∴CM=FM,
∵MH⊥CD,
∴CF=2CH=2×1=2,
∵四边形BCFE是菱形;
∴BC=CF=2;

(3)连接BC交CF于点O,
∵G是BC中点,
∴CG=
1
2
CB,
∵CH=
1
2
CF,
∴CG=CH,
在△CGM和△CHM中,
CM=CM
∠GCM=∠HCM
CG=CM

∴△CGM≌△CHM(SAS),
∴∠CGM=∠CHM=90°,
即FG⊥BC,
∴CF=BF,
∵BC=CF,
∴BC=CF=BF,
∴△BCF是等边三角形,
∴∠BFC=60°,
∴∠2=∠BFG=30°,
∵BF⊥CE,
∴OM=MH,
∵OE=OC=FG,
∴EM=FG+MH.
点评:此题考查了菱形的判定与性质、平行四边形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网