题目内容

7.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)若AG=7、GF=3,求DF的长.

分析 (1)连接DE交AF于H,先根据DF=EG,DF∥EG,判定四边形DFEG是平行四边形,再根据GF⊥DE,即可得出四边形EFDG是菱形;
(2)根据条件得到FH=$\frac{1}{2}$GF=$\frac{3}{2}$,AF=10,再根据Rt△ADF中,DH⊥AF,运用射影定理即可得到DF2=FH×FA,进而得出DF的长.

解答 解:(1)如图,连接DE交AF于H,
由折叠可得,AF⊥DE,DF=EF,∠DFG=∠EFG,
∵EG∥CD,
∴∠DFG=∠EGF,
∴∠EFG=∠EGF,
∴EG=EF,
∴DF=EG,
∵DF∥EG,
∴四边形DFEG是平行四边形,
∵GF⊥DE,
∴四边形EFDG是菱形;

(2)∵四边形EFDG是菱形,
∴FH=$\frac{1}{2}$GF=$\frac{3}{2}$,
∵AG=7,GF=3,
∴AF=10,
∵Rt△ADF中,DH⊥AF,
∴DF2=FH×FA,
即DF=$\sqrt{\frac{3}{2}×10}$=$\sqrt{15}$.

点评 本题主要考查了折叠问题,菱形的判定和性质以及射影定理的应用,利用射影定理得出DF2=FH×FA是解题答问题(2)的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网