题目内容

8.如图所示,∠ABC=∠ACB,CD⊥AC于C,BE⊥AB于B,AE交BC于点F,且BE=CD,下列结论不一定正确的是(  )
A.AB=ACB.BF=EFC.AE=ADD.∠BAE=∠CAD

分析 先根据∠ABC=∠ACB,得出AB=AC,再根据SAS判定△ABE≌△ACD,即可得到AE=AD,∠BAE=∠CAD,据此进行判断即可.

解答 解:∵∠ABC=∠ACB,
∴AB=AC,故A选项正确;
又∵CD⊥AC于C,BE⊥AB,
∴∠ABE=∠ACD,
又∵BE=CD,
∴△ABE≌△ACD,
∴AE=AD,∠BAE=∠CAD,故C、D选项正确;
而BF=EF不一定成立.
故选:B.

点评 本题主要考查了全等三角形的判定与性质的运用,解题时注意:全等三角形的对应边相等,对应角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网