题目内容

15.已知关于x的方程x2-(k+1)x-6=0.
(1)求证:无论k的取何实数,该方程总有两个不相等的实数根;
(2)若方程的一根为2,试求出k的值和另一根.

分析 (1)代入数据求出b2-4ac的值,由b2-4ac≥24可证出结论;
(2)将x=2代入到原方程中得到关于k的一元一次方程,解方程可得出k值,将k值代入到原方程,解方程即可得出方程的另外一根.

解答 (1)证明:∵b2-4ac=[-(k+1)]2-4×1×(-6)=(k+1)2+24≥24,
∴无论k的取何实数,该方程总有两个不相等的实数根.
(2)解:将x=2代入方程x2-(k+1)x-6=0中,
22-2(k+1)-6=0,即k+2=0,
解得:k=-2.
∴原方程=x2+x-6=(x-2)(x+3)=0,
解得:x1=2,x2=-3.
故k的值为-2,方程的另一根为-3.

点评 本题考查了根的判别式、解一元一次方程以及解一元二次方程,解题的关键是:(1)计算出b2-4ac≥24;(2)代入x=2求出k值.问题属于基础题,难度不大,解决该题型题目时,由根的判别式的值来判断根的个数是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网