题目内容

10.如图,四边形ABCD中,∠A=90°,AB=$3\sqrt{3}$,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为(  )
A.3B.4C.4.5D.5

分析 根据三角形中位线定理可知EF=$\frac{1}{2}$DN,求出DN的最大值即可.

解答 解:如图,连结DN,
∵DE=EM,FN=FM,
∴EF=$\frac{1}{2}$DN,
当点N与点B重合时,DN的值最大即EF最大,
在Rt△ABD中,∵∠A=90°,AD=3,AB=3$\sqrt{3}$,
∴BD=$\sqrt{A{D}^{2}+A{B}^{2}}$=$\sqrt{{3}^{2}+(3\sqrt{3})^{2}}$=6,
∴EF的最大值=$\frac{1}{2}$BD=3.
故选A.

点评 本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网