题目内容
18.分析 根据对称轴为直线x=1得出b,再把(3,0)代入即可得出c,从而得出二次函数的表达式.
解答 解:∵对称轴为直线x=1,
∴b=2,
把(3,0)代入y=-x2+2x+c得c=3,
∴二次函数的表达式为y=-x2+2x+3,
故答案为y=-x2+2x+3.
点评 本题考查了用待定系数法求二次函数的解析式,根据图象得出b和c的值是解题的关键.
练习册系列答案
相关题目
8.在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.
(1)计算表中a,b的值;
(2)估计该麦种的发芽概率;
(3)如果该麦种发芽后,只有87%的麦芽可以成活,现有100kg麦种,则有多少千克的麦种可以成活为秧苗?
| 试验种子n(粒) | 1 | 5 | 50 | 100 | 200 | 500 | 1000 | 2000 | 3000 |
| 发芽频数m | 1 | 4 | 45 | 92 | 188 | 476 | 951 | 1900 | 2850 |
| 发芽频率$\frac{m}{n}$ | 0 | 0.80 | 0.90 | 0.92 | 0.94 | 0.952 | 0.951 | a | b |
(2)估计该麦种的发芽概率;
(3)如果该麦种发芽后,只有87%的麦芽可以成活,现有100kg麦种,则有多少千克的麦种可以成活为秧苗?
9.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是( )
| A. | 先向左平移2个单位,再向下平移1个单位 | |
| B. | 先向左平移2个单位,再向上平移1个单位 | |
| C. | 先向右平移2个单位,再向下平移1个单位 | |
| D. | 先向右平移2个单位,再向上平移1个单位 |
13.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
从上表可知,下列说法中正确的是( )
①抛物线与x轴的一个交点为(3,0);
②函数y=ax2+bx+c的最大值为6;
③抛物线的对称轴是直线x=$\frac{1}{2}$;
④在对称轴左侧,y随x增大而增大.
| x | … | -2 | -1 | 0 | 1 | 2 | … |
| y | … | 0 | 4 | 6 | 6 | 4 | … |
①抛物线与x轴的一个交点为(3,0);
②函数y=ax2+bx+c的最大值为6;
③抛物线的对称轴是直线x=$\frac{1}{2}$;
④在对称轴左侧,y随x增大而增大.
| A. | ①②③ | B. | ①③④ | C. | ①②④ | D. | ②③④ |