题目内容

5.等腰三角形的底角为30°,腰长为2,则此三角形面积为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{2}$

分析 作出图形,过点A作AD⊥BC于D,根据等腰三角形三线合一的性质可得BC=2BD,根据直角三角形30°角所对的直角边等于斜边的一半可得AD=$\frac{1}{2}$AB,再利用勾股定理列式求出BD,然后根据三角形的面积公式列式计算即可得解.

解答 解:如图,过点A作AD⊥BC于D,
∵△ABC是等腰三角形,
∴BC=2BD,
∵底角∠B=30°,
∴AD=$\frac{1}{2}$AB=$\frac{1}{2}$×2=1,
由勾股定理得,BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴BC=2$\sqrt{3}$,
∴三角形的面积=$\frac{1}{2}$×2$\sqrt{3}$×1=$\sqrt{3}$.
故选A.

点评 本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质是解题的关键,作出图形更形象直观.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网