题目内容
5.等腰三角形的底角为30°,腰长为2,则此三角形面积为( )| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{2}$ |
分析 作出图形,过点A作AD⊥BC于D,根据等腰三角形三线合一的性质可得BC=2BD,根据直角三角形30°角所对的直角边等于斜边的一半可得AD=$\frac{1}{2}$AB,再利用勾股定理列式求出BD,然后根据三角形的面积公式列式计算即可得解.
解答
解:如图,过点A作AD⊥BC于D,
∵△ABC是等腰三角形,
∴BC=2BD,
∵底角∠B=30°,
∴AD=$\frac{1}{2}$AB=$\frac{1}{2}$×2=1,
由勾股定理得,BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴BC=2$\sqrt{3}$,
∴三角形的面积=$\frac{1}{2}$×2$\sqrt{3}$×1=$\sqrt{3}$.
故选A.
点评 本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质是解题的关键,作出图形更形象直观.
练习册系列答案
相关题目
20.
如图,平面直角坐标系中,矩形ABCO与双曲线y=$\frac{k}{x}$(x>0)交于D、E两点,将△OCD沿OD翻折,点C的对称点C′恰好落在边AB上,已知OA=3,OC=5,则AE长为( )
| A. | 4 | B. | 3 | C. | $\frac{26}{9}$ | D. | $\frac{25}{9}$ |