题目内容
先观察下列等式,然后用你发现的规律解答下列问题.
=1-
,
-
-
,
=
-
…
(1)计算:
+
+
+
+
= .
(2)探究:
+
+
+…+
= (用含有n的式子表示).
(3)若
+
+
+…+
=
,求n的值.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
(1)计算:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 5×6 |
(2)探究:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
(3)若
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| (2n-1)(2n+1) |
| 15 |
| 31 |
考点:分式的加减法,解分式方程
专题:规律型
分析:(1)观察一系列等式,得出拆项规律,原式利用拆项方法计算即可得到结果;
(2)根据得出的规律,计算即可得到结果;
(3)已知等式左边利用拆项法则计算,即可求出n的值.
(2)根据得出的规律,计算即可得到结果;
(3)已知等式左边利用拆项法则计算,即可求出n的值.
解答:解:(1)原式=1-
+
-
+
-
+
-
+
-
=1-
=
;
(2)原式=1-
+
-
+
-
+
-
+
-
+…+
-
=1-
=
;
(3)已知等式变形得:
(1-
+
-
+…+
-
)
=
(1-
)
=
×
=
,
去分母得:31n=30n+15,
解得:n=15.
故答案为:(1)
;(2)
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
=1-
| 1 |
| 6 |
=
| 5 |
| 6 |
(2)原式=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
(3)已知等式变形得:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 2n |
| 2n+1 |
=
| 15 |
| 31 |
去分母得:31n=30n+15,
解得:n=15.
故答案为:(1)
| 5 |
| 6 |
| n |
| n+1 |
点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目