题目内容
10.八年2班组织了一次经典诵读比赛,甲、乙两组各10人的比赛成绩如下表(10 分制):| 甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
| 乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(Ⅱ)计算乙组数据的平均数和方差;
(Ⅲ)已知甲组数据的方差是1.4分2,则成绩较为整齐的是乙组.
分析 (1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
(2)先求出乙组的平均成绩,再根据方差公式进行计算;
(3)先比较出甲组和乙组的方差,再根据方差的意义即可得出答案.
解答 解:(1)把甲组的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,
最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;
乙组成绩中10出现了4次,出现的次数最多,则乙组成绩的众数是10分;
故答案为:9.5,10;
(2)乙组的平均成绩是:$\frac{1}{10}$(10×4+8×2+7+9×3)=9,
则方差是:$\frac{1}{10}$[4×(10-9)2+2×(8-9)2+(7-9)2+3×(9-9)2]=1;
(3)∵甲组成绩的方差是1.4,乙组成绩的方差是1,
∴成绩较为整齐的是乙组.
故答案为乙组.
点评 本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一般地设n个数据,x1,x2,…xn的平均数为$\overline{x}$,则方差S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
练习册系列答案
相关题目
5.
如图,AD是正五边形ABCDE的一条对角线,则∠BAD=( )
| A. | 36° | B. | 70° | C. | 72° | D. | 108° |