ÌâÄ¿ÄÚÈÝ
19£®£¨1£©Ôòa=$\frac{4}{5}$£»¸ÃÅ×ÎïÏߵĶԳÆÖáΪx=3£»
£¨2£©Á¬½ÓAC£¬ÔÚÖ±ÏßACÏ·½µÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µãN£¬Ê¹¡÷NACµÄÃæ»ýΪ14£¿Èô´æÔÚ£¬ÇëÄãÇó³öµãNµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÉèP£¨m£¬n£©ÊÇÅ×ÎïÏßÉϵÄÒ»µã£¨m¡¢nΪÕýÕûÊý£©£¬ÇÒËüλÓÚ¶Ô³ÆÖáµÄÓҲ࣮ÈôÒÔA¡¢O¡¢M¡¢PΪ¶¥µãµÄËıßÐεÄËÄÌõ±ßµÄ³¤¶ÈÊÇËĸöÁ¬ÐøµÄÕýÕûÊý£¬ÇóµãPµÄ×ø±ê£®
·ÖÎö £¨1£©Ê×ÏȰÑx=0£¬y=4´úÈëy=a£¨x-1£©£¨x-5£©£¬Çó³öaµÄÖµÊǶàÉÙ£»È»ºóÇó³öB¡¢CÁ½µãµÄ×ø±ê£¬È·¶¨³ö¸ÃÅ×ÎïÏߵĶԳÆÖá¼´¿É£®
£¨2£©Ê×ÏȹýµãN×÷NG¡ÎyÖá½»ACÓÚG£¬Çó³öÖ±ÏßACµÄ½âÎöʽΪ£ºy=-$\frac{4}{5}$x+4£¬ÉèNµãµÄºá×ø±êÊÇt£¬Ôò´ËʱµãN£¨t£¬$\frac{4}{5}$t2-$\frac{24}{5}t$+4£©£¨0£¼t£¼5£©£»È»ºóÇó³ö¡÷CANÃæ»ýµÄ×î´óֵΪ¶àÉÙ£¬ÅжϳöÊÇ·ñ´æÔÚÒ»µãN£¬Ê¹¡÷NACµÄÃæ»ýΪ14¼´¿É£®
£¨3£©Ê×ÏÈÅжϳöÒÔA¡¢O¡¢M¡¢PΪ¶¥µãµÄËıßÐÎÓÐÁ½Ìõ±ß£ºAO=4£¬OM=3£¬ÅжϳöÒÔ1¡¢2¡¢3¡¢4Ϊ±ß»òÒÔ2¡¢3¡¢4¡¢5Ϊ±ß¶¼²»·ûºÏÌâÒ⣬ËùÒÔËÄÌõ±ßµÄ³¤Ö»ÄÜÊÇ3¡¢4¡¢5¡¢6Ò»ÖÖÇé¿ö£¬È»ºóÖ¤Ã÷ÒÔA¡¢O¡¢M¡¢PΪ¶¥µãµÄËıßÐεÄËÄÌõ±ßµÄ³¤ÊÇ3¡¢4¡¢5¡¢6³ÉÁ¢£¬²¢Çó³öPµÄ×ø±êÊǶàÉÙ¼´¿É£®
½â´ð ½â£º£¨1£©°Ñx=0£¬y=4´úÈëy=a£¨x-1£©£¨x-5£©£¬
¿ÉµÃa¡Á£¨-1£©¡Á£¨-5£©=4£¬
½âµÃa=$\frac{4}{5}$£»
¡ßB¡¢CÁ½µãµÄ×ø±ê·Ö±ðÊÇ£¨1£¬0£©¡¢£¨5£¬0£©£¬
¡à¸ÃÅ×ÎïÏߵĶԳÆÖáΪx=£¨5+1£©¡Â2=3£¬
¼´¸ÃÅ×ÎïÏߵĶԳÆÖáΪx=3£®
£¨2£©Èçͼ1£¬¹ýµãN×÷NG¡ÎyÖá½»ACÓÚG£¬
£¬
Å×ÎïÏßy=$\frac{4}{5}$£¨x-1£©£¨x-5£©=$\frac{4}{5}$x2$-\frac{24}{5}x$+4£¬
ÓɵãA£¨0£¬4£©ºÍµãC£¨5£¬0£©£¬¿ÉµÃÖ±ÏßACµÄ½âÎöʽΪ£ºy=-$\frac{4}{5}$x+4£¬
ÉèNµãµÄºá×ø±êÊÇt£¬Ôò´ËʱµãN£¨t£¬$\frac{4}{5}$t2-$\frac{24}{5}t$+4£©£¨0£¼t£¼5£©£¬
°Ñx=t´úÈëy=-$\frac{4}{5}$x+4£¬
¿ÉµÃG£¨t£¬-$\frac{4}{5}$t+4£©£¬
´ËʱNG=-$\frac{4}{5}$t+4-£¨$\frac{4}{5}$t2-$\frac{24}{5}t$+4£©=-$\frac{4}{5}$t2+4t£¬
¡àS¡÷NAC=S¡÷ANG+S¡÷CGN=$\frac{1}{2}¡Á5$¡Á£¨-$\frac{4}{5}$t2+4t£©=-2t2+10t=-2${£¨t-\frac{5}{2}£©}^{2}$+$\frac{25}{2}$£¬
¡àµ±t=$\frac{5}{2}$ʱ£¬¡÷NACÃæ»ýµÄ×î´óֵΪ£º$\frac{25}{2}£¼14$£¬
¡àÔÚÖ±ÏßACÏ·½µÄÅ×ÎïÏßÉϲ»´æÔÚÒ»µãN£¬Ê¹¡÷NACµÄÃæ»ýΪ14£®
£¨3£©Èçͼ2£¬
£¬
ÒÔA¡¢O¡¢M¡¢PΪ¶¥µãµÄËıßÐÎÓÐÁ½Ìõ±ß£ºAO=4£¬OM=3£¬
ÓÖ¡ßµãPµÄ×ø±êÖÐx£¾5£¬
¡àMP£¾2£¬AP£¾2£¬
¡àÒÔ1¡¢2¡¢3¡¢4Ϊ±ß»òÒÔ2¡¢3¡¢4¡¢5Ϊ±ß¶¼²»·ûºÏÌâÒ⣬
¡àËÄÌõ±ßµÄ³¤Ö»ÄÜÊÇ3¡¢4¡¢5¡¢6Ò»ÖÖÇé¿ö£®
ÔÚRt¡÷AOMÖУ¬AM=$\sqrt{{OA}^{2}{+OM}^{2}}$=5£¬
¡ßÅ×ÎïÏߵĶԳÆÖá¹ýµãM£¬
¡àÔÚÅ×ÎïÏßx£¾5µÄͼÏóÉÏÓйØÓÚµãAµÄ¶Ô³ÆµãÓëMµÄ¾àÀëΪ5£¬
¼´PM=5£¬´ËʱµãPºá×ø±êΪ6£¬¼´AP=6£¬
¡àÒÔA¡¢O¡¢M¡¢PΪ¶¥µãµÄËıßÐεÄËÄÌõ±ßµÄ³¤ÊÇ3¡¢4¡¢5¡¢6³ÉÁ¢£¬
¼´P£¨6£¬4£©£®
¹Ê´ð°¸Îª£º$\frac{4}{5}$¡¢x=3£®
µãÆÀ £¨1£©´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬¿¼²éÁË·ÖÎöÍÆÀíÄÜÁ¦£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Ó㬿¼²éÁË´ÓÒÑÖªº¯ÊýͼÏóÖлñÈ¡ÐÅÏ¢£¬²¢ÄÜÀûÓûñÈ¡µÄÐÅÏ¢½â´ðÏàÓ¦µÄÎÊÌâµÄÄÜÁ¦£»
£¨2£©´ËÌ⻹¿¼²éÁËÈý½ÇÐεÄÃæ»ýµÄÇ󷨣¬ÒÔ¼°ÊýÐνáºÏ·½·¨µÄÓ¦Óã¬ÒªÊìÁ·ÕÆÎÕ£®
| ¼× | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
| ÒÒ | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
£¨¢ò£©¼ÆËãÒÒ×éÊý¾ÝµÄƽ¾ùÊýºÍ·½²î£»
£¨¢ó£©ÒÑÖª¼××éÊý¾ÝµÄ·½²îÊÇ1.4·Ö2£¬Ôò³É¼¨½ÏΪÕûÆëµÄÊÇÒÒ×飮
| A£® | 1 | B£® | -1 | C£® | -5 | D£® | -6 |
| Ñ¡ÊÖ | ¼× | ÒÒ | ±û | ¶¡ |
| ·½²î£¨»·2£© | 0.31 | 1.4 | 2.2 | 0.5 |
| A£® | ¼× | B£® | ÒÒ | C£® | ±û | D£® | ¶¡ |
| A£® | £¨-x£©6¡Â£¨-x£©2=-x4 | B£® | $\sqrt{{x}^{2}+{y}^{2}}$=x+y£¨x£¾0£¬y£¾0£© | ||
| C£® | x¡Ây•$\frac{1}{y}$=x | D£® | 0-£¨-1£©=1 |