题目内容
17.(1)求A点的坐标.
(2)求该抛物线的函数表达式.
(3)连接AC.请问:在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
分析 (1)求值直线y=-x+3与x轴的交点B,然后根据AB的长,即可求得OA的长,则A的坐标即可求得;
(2)利用待定系数法求得二次函数的解析式;
(3)分成$\frac{BQ}{BC}$=$\frac{PB}{AB}$,∠PBQ=∠ABC=45°和$\frac{QB}{AB}$=$\frac{PB}{BC}$,∠QBP=∠ABC=45°两种情况求得QB的长,据此即可求解.
解答 解:(1)当y=0时,-x+3=0,解得x=3,即B(3,0),
又∵点A与点B关于x=2对称,
∴A的坐标为(1,0);
(2)根据题意得:$\left\{\begin{array}{l}{a+b+c=0}\\{9a+3b+c=0}\\{c=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=-4}\\{c=3}\end{array}\right.$,
∴抛物线的解析式是:y=x2-4x+3;
(3)①当$\frac{BQ}{BC}$=$\frac{PB}{AB}$,∠PBQ=∠ABC=45°时,△PBQ∽△ABC,即$\frac{BQ}{3}$=$\frac{\sqrt{2}}{2}$,
∴BQ=3,
又∵BO=3,
∴点Q与点O重合,
∴Q1的坐标是(0,0).
②当$\frac{QB}{AB}$=$\frac{PB}{BC}$,∠QBP=∠ABC=45°时,△QBP∽△ABC,即$\frac{QB}{2}$=$\frac{\sqrt{2}}{3\sqrt{2}}$,
QB=$\frac{2}{3}$.
∵OB=3,
∴OQ=OB-QB=3-$\frac{2}{3}$=$\frac{7}{3}$
∴Q2的坐标是($\frac{7}{3}$,0).
∵∠PBx=180°-45°=135°,∠BAC<135°,
∴∠PBx≠∠BAC.
∴点Q不可能在B点右侧的x轴上
综上所述,在x轴上存在两点Q1(0,0),Q2($\frac{7}{3}$,0).
点评 本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,相似三角形的判定与性质,正确进行分类求得QB的长是解题的关键.
| 运往地 车型 | 甲地(元/辆) | 乙地(元/辆) |
| 大货车 | 720 | 800 |
| 小货车 | 500 | 650 |
(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式;
(3)在(2)的条件下,若运往甲地的物资不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最少总运费.