题目内容
如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C 点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为 ( )
A.5:3 B.3:5 C.4:3 D.3:4
C.
【解析】
试题分析:由题意知△BCE绕点C顺时转动了90度,
∴△BCE≌△DCF,∠ECF=∠DFC=90°,
∴CD=BC=5,DF∥CE,
∴∠ECD=∠CDF,
∵∠EMC=∠DMF,
∴△ECM∽△FDM,
∴DM:MC=DF:CE,
∵DF=
∴DM:MC=DF:CE=4:3.
故选C.
考点:1.相似三角形的判定与性质;2.勾股定理;3.直角梯形;4.旋转的性质.
练习册系列答案
相关题目