题目内容
如图,把一块含有45°角的直角三角板两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是( )
A.15° B.20° C.25° D.30°
C
分式的值为0,则的值为( )
A.1 B.-1 C.0 D.
如图,已知点A(-4,8)和点B(2,n)在抛物线上.求a的值及点B的坐标.
如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为( )
A.30° B.60° C.80° D.120°
如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.
(1)旋转中心是点 ,旋转角度是 度;
(2)若连结EF,则△AEF是 三角形;并证明
在反比例函数的图象中,阴影部分的面积不等于4的是( )
如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C 点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为 ( )
A.5:3 B.3:5 C.4:3 D.3:4
(本小题满分12分)点P为抛物线y=x2-2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A,B两点(点A在点B的上方),点Q为点P旋转后的对应点.
(1)当m=2,点P横坐标为4时,求Q点的坐标;
(2)设点Q(a,b),用含m,b的代数式表示a;(直接写出结果)
(3)如图,点Q在第一象限内,点D在并轴的正半轴上,点C为OD的中点,QD平分∠AQC,AQ=2QC,当QD=m时,求m的值.
(本小题满分8分,每题4分)
(1)不解方程,判断方程根的情况.
(2)求抛物线与x轴的两个交点坐标.