题目内容
19.因式分解:9(a-b)2-30(a2-b2)+25(a+b)2.分析 原式变形后,利用完全平方公式分解即可.
解答 解:原式=9(a-b)2-30(a+b)(a-b)+25(a+b)2
=[3(a-b)-5(a+b)]2
=(-2a-8b)2
=4(a+4b)2.
点评 此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
练习册系列答案
相关题目
9.
我们知道:|a|表示数轴上,数a的点到原点的距离.爱动脑筋的小明联系绝对值的概念和“|a|=|a-0|”,进而提出这样的问题:数轴上,数a的点到数1点的距离,是不是可以表示为|a-1|?小明的想法是否正确呢?让我们一起来探究吧!
步骤一:实验与操作:
(1)已知点A、B在数轴上分别表示a、b.填写表格
步骤二:观察与猜想:
(2)观察上表:猜想A、B两点之间的距离可以表示为|a-b|(用a、b的代数式表示)
步骤三:理解与应用:
(3)动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动.运动到3秒时,两点相距15个单位长度.已知动点A、B的速度之比是3:2(速度单位:1个单位长度/秒).
①求两个动点运动的速度;
②A、B两动点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;
③若A、B两动点分别从(2)中标出的位置再次同时开始在数轴上运动,运动速度不变,运动方向不限.问:经过几秒后,A、B两动点之间相距4个单位长度.
步骤一:实验与操作:
(1)已知点A、B在数轴上分别表示a、b.填写表格
| a | 3 | -5 | 5 | -10 | -5.5 | … |
| b | 7 | 0 | -1 | 2 | -1.5 | … |
| A、B两点之间的距离 | 4 | 5 | … |
(2)观察上表:猜想A、B两点之间的距离可以表示为|a-b|(用a、b的代数式表示)
步骤三:理解与应用:
(3)动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动.运动到3秒时,两点相距15个单位长度.已知动点A、B的速度之比是3:2(速度单位:1个单位长度/秒).
①求两个动点运动的速度;
②A、B两动点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;
③若A、B两动点分别从(2)中标出的位置再次同时开始在数轴上运动,运动速度不变,运动方向不限.问:经过几秒后,A、B两动点之间相距4个单位长度.