题目内容
10.分析 过P作PC⊥AB于点C,根据题意得到∠PAC=30°,∠PBC=45°,根据正切的定义得到AC=$\sqrt{3}$PC,根据题意列方程,解方程即可.
解答 解:过P作PC⊥AB于点C,![]()
∴∠ACP=90°.
由题意可知,∠PAC=30°,∠PBC=45°.
∴∠BPC=45°.
∴BC=PC.
在Rt△ACP中,$AC=\frac{PC}{tan∠PAC}=\sqrt{3}PC$.
∵AB=400米,
∴400+PC=AC=$\sqrt{3}$PC.
∴PC=$\frac{400}{\sqrt{3}-1}$≈546.4米.
546.4-100=446.4米.
答:河流宽度约为446.4米.
点评 本题考查的是解直角三角形的应用-方向角问题,正确作出辅助线、熟记锐角三角函数的定义、正确标注方向角是解题的关键.
练习册系列答案
相关题目
18.在($\frac{2}{3}$)2,($\frac{3}{4}$)-2,($\frac{6}{5}$)2,($\frac{6}{7}$)0这四个数中,最小的是( )
| A. | ($\frac{2}{3}$)2 | B. | ($\frac{3}{4}$)-2 | C. | ($\frac{6}{5}$)2 | D. | ($\frac{6}{7}$)0 |