题目内容

12.如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求证:△ABP≌△ACQ.
(2)判断△APQ的形状,并说明理由.

分析 (1)根据△ABC为等边三角形,得到AB=AC.根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AP=AQ,∠BAP=∠CAQ.由三角形的外角的性质得到∠BAC=∠BAP+∠PAC=60°,即可得到结论.

解答 (1)证明:∵△ABC为等边三角形,
∴AB=AC.
在△ABP与△ACQ中,
∵$\left\{\begin{array}{l}{AB=AC}\\{∠ABP=∠ACQ}\\{BP=CQ}\end{array}\right.$,
∴△ABP≌△ACQ(SAS);

(2)解:△APQ为等边三角形,
理由:∵△ABP≌△ACQ,
∴AP=AQ,∠BAP=∠CAQ,
∵∠BAC=∠BAP+∠PAC=60°,
∴∠PAQ=∠CAQ+∠PAC=60°,
∴△APQ是等边三角形.

点评 本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网