题目内容
4.化简:$\frac{x}{{x}^{2}-2x+1}$÷($\frac{x+1}{{x}^{2}-1}$+1)分析 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.
解答 解:原式=$\frac{x}{(x-1)^{2}}$÷$\frac{x(x+1)}{(x+1)(x-1)}$
=$\frac{x}{(x-1)^{2}}$•$\frac{(x+1)(x-1)}{x(x+1)}$
=$\frac{1}{x-1}$.
点评 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
14.二元一次方程组$\left\{\begin{array}{l}{3x+2y=6}\\{y=x-2}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=-\frac{3}{2}}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=-\frac{3}{2}}\\{y=\frac{1}{2}}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=0}\\{y=-2}\end{array}\right.$ |
14.在平面直角坐标系中,点A(-2,1)与点B关于原点对称,则点B的坐标为( )
| A. | (-2,1) | B. | (2,-1) | C. | (2,1) | D. | (-2,-1) |