题目内容
11.分析 连接AD,由圆周角定理得出∠AEB=∠ADB=90°,由等腰三角形的性质得出BD=CD,由三角形中位线定理得出OD∥AC,CE=2MD=4,求出AE,再由勾股定理求出BE即可.
解答 解:连接AD,如图所示:![]()
∵以AB为直径的⊙O与BC交于点D,
∴∠AEB=∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
∵OA=OB,
∴OD∥AC,
∴BM=EM,
∴CE=2MD=4,
∴AE=AC-CE=6,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$;
故答案为:8.
点评 本题考查了圆周角定理、等腰三角形的性质、勾股定理、三角形中位线定理;熟练掌握圆周角定理,由三角形中位线定理求出CE是解决问题的关键.
练习册系列答案
相关题目