ÌâÄ¿ÄÚÈÝ
Íê³ÉÏÂÁÐÍÆµ¼¹ý³Ì£º
ÈÎÒâÒ»Ôª¶þ´Î·½³Ì¶¼¿ÉÒÔд³ÉÒ»°ãÐÎʽ
ax2+bx+c=0£¨a¡Ù0£©£¬
ÒÆÏµÃax2+bx=-c£®
¶þ´ÎÏîϵÊý»¯Îª1£¬µÃx2+
x=-
Åä·½£¬µÃ
x2+
x+(
)2=-
+(
)2£¬
¼´(x+
)2=
£®
ÒòΪa¡ÙO£¬ËùÒÔ4a2£¾0£®
ËùÒÔ£º
£¨1£©µ± ʱ£¬x1=
£¬x2=
£¨x1¡Ùx2£©
£¨2£©µ± ʱ£¬x1=x2=-
£»
£¨3£©µ± ʱ£¬·½³Ìax2+bx+c=0£¨a¡Ù0£©Ã»ÓÐʵÊý¸ù£®
ÈÎÒâÒ»Ôª¶þ´Î·½³Ì¶¼¿ÉÒÔд³ÉÒ»°ãÐÎʽ
ax2+bx+c=0£¨a¡Ù0£©£¬
ÒÆÏµÃax2+bx=-c£®
¶þ´ÎÏîϵÊý»¯Îª1£¬µÃx2+
| b |
| a |
| c |
| a |
Åä·½£¬µÃ
x2+
| b |
| a |
| b |
| 2a |
| c |
| a |
| b |
| 2a |
¼´(x+
| b |
| 2a |
| b2-4ac |
| 4a2 |
ÒòΪa¡ÙO£¬ËùÒÔ4a2£¾0£®
ËùÒÔ£º
£¨1£©µ±
-b+
| ||
| 2a |
-b-
| ||
| 2a |
£¨2£©µ±
| b |
| 2a |
£¨3£©µ±
¿¼µã£º½âÒ»Ôª¶þ´Î·½³Ì-Åä·½·¨
רÌâ£ºÍÆÀíÌî¿ÕÌâ,ÔĶÁÐÍ,Åä·½·¨
·ÖÎö£º¸ù¾ÝÕýÊýÓÐÁ½¸öƽ·½¸ù£¬0µÄƽ·½¸ùÊÇ0£¬¸ºÊýûÓÐÆ½·½¸ù¼´¿ÉµÃµ½½á¹û£®
½â´ð£º½â£º£¨1£©µ±b2-4ac£¾0ʱ£¬x1=
£¬x2=
£¨x1¡Ùx2£©£»
£¨2£©µ±b2-4ac=0ʱ£¬x1=x2=-
£»
£¨3£©b2-4ac£¼0ʱ£¬·½³Ìax2+bx+c=0£¨a¡Ù0£©Ã»ÓÐʵÊý¸ù£®
¹Ê´ð°¸Îª£º£¨1£©b2-4ac£¾0£»£¨2£©b2-4ac=0£»£¨3£©b2-4ac£¼0
-b+
| ||
| 2a |
-b-
| ||
| 2a |
£¨2£©µ±b2-4ac=0ʱ£¬x1=x2=-
| b |
| 2a |
£¨3£©b2-4ac£¼0ʱ£¬·½³Ìax2+bx+c=0£¨a¡Ù0£©Ã»ÓÐʵÊý¸ù£®
¹Ê´ð°¸Îª£º£¨1£©b2-4ac£¾0£»£¨2£©b2-4ac=0£»£¨3£©b2-4ac£¼0
µãÆÀ£º´ËÌ⿼²éÁ˽âÒ»Ôª¶þ´Î·½³Ì-Åä·½·¨£¬ÊìÁ·ÕÆÎÕ¸ùµÄÅбðʽµÄÒâÒåÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁÐËÄ·ùͼÖУ¬Ã¿·ùͼÖеÄÁ½¸öͼÐοÉÒÔÆ½ÒƵõ½µÄÓУ¨¡¡¡¡£©

| A¡¢1¸ö | B¡¢2¸ö | C¡¢3¸ö | D¡¢4¸ö |