题目内容

如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不精英家教网与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.
(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.
分析:(1)根据题意,作出图示;分析可得:AM=8,且△ADE∽△ABC,进而可得
DE
12
=
8-DE
8
,解可得答案.
(2)分两种情况:①当正方形DEFG在△ABC的内部时,②当正方形DEFG的一部分在△ABC的外部时,依据平行线以及正方形的性质,可得二次函数,再根据二次函数的性质,解可得重合部分的面积,比较可得面积的最大值.
解答:解:
(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.
∵S△ABC=48,BC=12,∴AM=8,
∵DE∥BC,△ADE∽△ABC,
DE
BC
=
AN
AM

而AN=AM-MN=AM-DE,∴
DE
12
=
8-DE
8

解之得DE=4.8.∴当正方形DEFG的边GF在BC上时,正方形DEFG的边长为4.8,
精英家教网
(2)分两种情况:
①当正方形DEFG在△ABC的内部时,
如图(2),△ABC与正方形DEFG重叠部分的面积为正方形DEFG的面积,
∵DE=x,∴y=x2
此时x的范围是0<x≤4.8,
②当正方形DEFG的一部分在△ABC的外部时,
如图(3),设DG与BC交于点Q,EF与BC交于点P,
△ABC的高AM交DE于N,
∵DE=x,DE∥BC,∴△ADE∽△ABC,
DE
BC
=
AN
AM
,而AN=AM-MN=AM-EP,
x
12
=
8-EP
8
,解得EP=8-
2
3
x.
所以y=x(8-
2
3
x),即y=-
2
3
x2+8x,
由题意,x>4.8,且x<12,所以4.8<x<12;
因此△ABC与正方形DEFG重叠部分的面积需分两种情况讨论,
当0<x≤4.8时,△ABC与正方形DEFG重叠部分的面积的最大值为4.82=23.04,
当4.8<x<12时,因为y=-
2
3
x2+8x

所以当x=-
8
2×(-
2
3
)
=6
时,
△ABC与正方形DEFG重叠部分的面积的最大值为二次函数的最大值:y最大=-
2
3
×62+8×6=24;
因为24>23.04,
所以△ABC与正方形DEFG重叠部分的面积的最大值为24.
点评:本题主要考查了二次函数,平行线以及正方形的性质等知识点,要根据题意,得到二次函数关系,再根据二次函数的性质,即可得答案.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网