题目内容

7.利用有理数运算法则和绝对值的几何定义求下列不等式中x的取值范围:
(1)$\frac{3x+1}{5-x}$<0;(2)(x+5)(x-3)>0;(3)|2x-1|≤3.

分析 (1)利用已知得出$\left\{\begin{array}{l}{3x+1<0}\\{5-x>0}\end{array}\right.$或$\left\{\begin{array}{l}{3x+1>0}\\{5-x<0}\end{array}\right.$,进而求出答案;
(2)利用有理数乘法运算法则得出不等式组求出答案;
(3)利用绝对值的性质得出2x-1的取值范围,进而得出答案.

解答 解:(1)∵$\frac{3x+1}{5-x}$<0
∴$\left\{\begin{array}{l}{3x+1<0}\\{5-x>0}\end{array}\right.$或$\left\{\begin{array}{l}{3x+1>0}\\{5-x<0}\end{array}\right.$,
解得:x<-$\frac{1}{3}$或x>5;

(2)∵(x+5)(x-3)>0,
∴$\left\{\begin{array}{l}{x+5>0}\\{x-3>0}\end{array}\right.$或$\left\{\begin{array}{l}{x+5<0}\\{x-3<0}\end{array}\right.$,
解得:x>3或x<-5;

(3)∵|2x-1|≤3,
∴-3≤2x-1≤3,
解得:-1≤x≤2.

点评 此题主要考查了绝对值以及不等式组的解法,正确分类讨论是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网