题目内容

8.如图,在等边三角形ABC中,点M是BC边上的任意一点(不与端点重合),连接AM,以AM为边作等边三角形AMN,连接CN.
(1)求∠ACN的度数.
(2)若点M在△ABC的边BC的延长线上,其他条件不变,则∠ACN的度数是否发生变化?(直接写出结论即可)

分析 (1)根据等边三角形的性质可得AB=AC,AM=AN,∠BAC=∠MAN=60°,进而得到∠BAM=∠CAN,再利用SAS可证明△BAM≌△CAN,继而得出结论;
(2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样.

解答 (1)证明:∵△ABC、△AMN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∠B=60°,
∴∠BAM=∠CAN,
在△BAM和△CAN中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAM=∠CAN}\\{AM=AN}\end{array}\right.$,
∴△BAM≌△CAN(SAS),
∴∠ACN=∠B=60°;
(2)解:结论∠ACN=60°仍成立.如图,
理由如下:∵△ABC、△AMN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△BAM和△CAN中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAM=∠CAN}\\{AM=AN}\end{array}\right.$,
∴△BAM≌△CAN(SAS),
∴∠ACN=∠B=60°.

点评 本题主要考查了等边三角形的性质,以及全等三角形的判定与性质,解答本题的关键是仔细观察图形,找到全等的条件,利用全等的性质证明结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网