题目内容

如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则△AED的周长是
 
考点:旋转的性质,等边三角形的判定与性质
专题:计算题
分析:先根据旋转的性质得BE=BD,AE=CD,∠DBE=60°,于是可判断△BDE为等边三角形,则有DE=BD=4,所以△AED的周长=DE+AC,再利用等边三角形的性质得AC=BC=5,则易得△AED的周长为9.
解答:解:∵△BCD绕点B逆时针旋转60°得到△BAE,
∴BE=BD,AE=CD,∠DBE=60°,
∴△BDE为等边三角形,
∴DE=BD=4,
∴△AED的周长=DE+AE+AD=DE+CD+AD=DE+AC,
∵△ABC为等边三角形,
∴AC=BC=5,
∴△AED的周长=DE+AC=4+5=9.
故答案为9°.
点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网