题目内容
16.(1)求证:AB=AD;
(2)若tan∠OCB=2,⊙O的半径为3,求BD的长.
分析 (1)连接OB,利用切线的性质以及等腰三角形的性质证明∠ADB=∠ABD,利用等角对等边证得;
(2)设AC=a,则AB=AD=2a,在Rt△AOB中利用勾股定理即可列方程求得a的值,进而求得BD的长.
解答
解:(1)证明:连接OB.
∵AB是⊙O的切线,OA⊥l,
∴∠OBA=∠OAD=90°,
又OB=OC,
∴∠OBC=∠COB=∠ACD,
∴∠ADB=∠ABD,
∴AB=AD;
(2)∵tan∠OCB=tan∠ACD=$\frac{AD}{AC}$=2,⊙O的半径是3,
设AC=a,则AB=AD=2a,
在Rt△AOB中,OA2=AB2+OB2,
∴(a+3)2=(2a)2+32,
∴a=2.
过点A作AE⊥BD,设AE=x,DE=2x,则5x2=16,x=$\frac{4\sqrt{5}}{5}$,
∴DE=BE=$\frac{8\sqrt{5}}{5}$,
∴BD=$\frac{16\sqrt{5}}{5}$.
点评 本题考查了切线的性质以及勾股定理的应用,正确作出辅助线构造直角三角形是关键.
练习册系列答案
相关题目
7.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:
未来40天内,前20天每天的价格y1 (元/件)与时间t(天)的函数关系式为y1=0.25t+25(1≤t≤20且t为整数),后20天每天的价格y2 (元/件)与时间t(天)的函数关系式y2=-0.5+40(21≤t≤40且t为整数).
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品,就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,请直接写出a的取值范围.
| 时间t/天 | 1 | 3 | 6 | 10 | 36 | … |
| 日销售量m/件 | 94 | 90 | 84 | 76 | 24 | … |
下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中,该公司决定每销售一件商品,就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,请直接写出a的取值范围.