题目内容

13.化简:$\frac{2}{\sqrt{12-4\sqrt{5}}}$-$\frac{1}{\sqrt{3+\sqrt{5}}}$=$\frac{\sqrt{10}}{4}$-$\frac{\sqrt{2}}{4}$-$\sqrt{6}$+2.

分析 利用完全平方公式变形得到原式=$\frac{2}{\sqrt{(\sqrt{10}-\sqrt{2})^{2}}}$-$\frac{1}{\frac{\sqrt{(\sqrt{3}+\sqrt{2})^{2}}}{\sqrt{2}}}$,然后利用二次根式的性质化简后进行分母有理化即可.

解答 解:原式=$\frac{2}{\sqrt{12-2\sqrt{20}}}$-$\frac{1}{\sqrt{\frac{6+2\sqrt{5}}{2}}}$
=$\frac{2}{\sqrt{(\sqrt{10}-\sqrt{2})^{2}}}$-$\frac{1}{\frac{\sqrt{(\sqrt{3}+\sqrt{2})^{2}}}{\sqrt{2}}}$
=$\frac{2}{\sqrt{10}-\sqrt{2}}$-$\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
=$\frac{\sqrt{2}}{\sqrt{5}-1}$-$\sqrt{2}$($\sqrt{3}$-$\sqrt{2}$)
=$\frac{\sqrt{10}}{4}$-$\frac{\sqrt{2}}{4}$-$\sqrt{6}$+2.
故答案为$\frac{\sqrt{10}}{4}$-$\frac{\sqrt{2}}{4}$-$\sqrt{6}$+2.

点评 本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网