题目内容

4.如图,AB为⊙O的直径,CD切⊙O于点C,与BA的延长线交于点D,OE⊥AB交⊙O于点E,连接CA、CE、CB,CE交AB于点G,过点A作AF⊥CE于点F,延长AF交BC于点P.
(Ⅰ)求∠CPA的度数;
(Ⅱ)连接OF,若AC=$\sqrt{3}$,∠D=30°,求线段OF的长.

分析 (Ⅰ)连接AE,由OA=OB且OE⊥AB知∠OEG+∠AEC=45°,再证∠OEG=∠BAP、∠AEC=∠ABP,在△ABP中利用三角形外角性质可得答案;
(Ⅱ)由切线性质及∠D=30°可得∠AOC=∠OAC=60°,在Rt△ABC中求得BC=3,由∠APC=45°、∠ACP=90°得CP=AC=$\sqrt{3}$,可知BP=3-$\sqrt{3}$,证OF为△ABP中位线可得答案.

解答 解:(Ⅰ)如图,连接AE,

∵OE⊥AB,OA=OE,
∴∠AOE=90°,∠AEO=45°,
∴∠OEG+∠OGE=90°,
∵AF⊥CE,
∴∠AFG=90°,
∴∠FAG+∠AGF=90°,
∵∠AGF=∠OGE,
∴∠OEG=∠BAP,
∵∠AEC=∠ABC,
∴∠APC=∠ABC+∠BAP=∠AEC+∠OEG=∠AEO=45°;

(Ⅱ)连接OC,
∵CD是⊙O的切线,
∴∠DCO=90°,
∵∠D=30°,
∴∠AOC=60°,
∵OA=OC,
∴∠BAC=60°,
在Rt△ABC中,AC=$\sqrt{3}$,
∴BC=ACtan∠BAC=$\sqrt{3}$×$\sqrt{3}$=3,
由(1)知,AC=CP=$\sqrt{3}$,
∴BP=BC-CP=3-$\sqrt{3}$,
∵AF⊥CE,
∴AF=PF,
∵OA=OB,
∴OF=$\frac{1}{2}$BP=$\frac{3-\sqrt{3}}{2}$.

点评 本题主要考查切线的性质、圆周角定理及解直角三角形等知识点,熟练掌握圆的切线的性质及圆周角定理、三角形外角的性质等是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网