题目内容

3.如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=45°.

分析 求出△ADC≌△BDH,推出AD=BD,根据等腰三角形性质得出∠ABD=∠BAD,根据三角形内角和定理求出即可.

解答 解:∵AD、BE是△ABC的高,
∴∠ADC=∠BDH=90°,∠∠BEC=90°,
∴∠C+∠CAD=90°,∠C+∠HBD=90°,
∴∠CAD=∠HBD,
在△HBD和△CAD中,$\left\{\begin{array}{l}{∠HBD=∠CAD}\\{∠BDH=∠ADC=90°}\\{BH=AC}\end{array}\right.$,
∴△HBD≌△CAD(AAS),
∴BD=AD,
∵∠ADB=90°,
∴∠ABC=∠BAD=45°,
故答案为:45°.

点评 本题考查了等腰三角形的性质,三角形内角和定理,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网