题目内容

17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是2、4、1、2,则正方形E的面积是(  )
A.36B.25C.18D.9

分析 分别设中间两个正方形和最大正方形的边长为x,y,z,由勾股定理得出x2=22+42,y2=22+12,z2=x2+y2,即最大正方形的面积为z2

解答 解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:
x2=22+42=20;
y2=12+22=5;
z2=x2+y2=25;
即最大正方形E的边长为:$\sqrt{25}$=5,所以面积为:z2=25.
故选B.

点评 本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网