题目内容

1.已知关于x,y的方程组$\left\{\begin{array}{l}{3x-y=k}\\{2x+3y=2k-1}\end{array}\right.$的解满足不等式$\left\{\begin{array}{l}{x-4y≥0}\\{5x+2y≥-2}\end{array}\right.$,求满足条件的k的整数值.

分析 将k看做已知数表示出x与y,代入已知不等式组即可求出k的范围,即可确定整数值.

解答 解:方程组$\left\{\begin{array}{l}{3x-y=k}\\{2x+3y=2k-1}\end{array}\right.$
解得:$\left\{\begin{array}{l}{x=\frac{5k-1}{11}}\\{y=\frac{4k-3}{11}}\end{array}\right.$,
把$\left\{\begin{array}{l}{x=\frac{5k-1}{11}}\\{y=\frac{4k-3}{11}}\end{array}\right.$代入不等式$\left\{\begin{array}{l}{x-4y≥0}\\{5x+2y≥-2}\end{array}\right.$得:
$\left\{\begin{array}{l}{-11k+12≤0}\\{3k+11≥0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k≤\frac{12}{11}}\\{k≥-\frac{11}{3}}\end{array}\right.$,
∴$-\frac{11}{3}≤k≤\frac{12}{11}$.
∴k=-3,-2,-1,0,1.

点评 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,解决本题的关键是求出方程组的解,列出不等式组.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网