ÌâÄ¿ÄÚÈÝ
20£®£¨1£©ÇóbµÄÖµÒÔ¼°Dµã×ø±ê£®
£¨2£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãP£¬ÄÜʹµÃ¡÷ACPÓë¡÷BCDÏàËÆ£¬Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©Á¬½áBD¡¢CD£¬¶¯µãQµÄ×ø±êΪ£¨m£¬1£©£®
¢Ùµ±ËıßÐÎBQCDÊÇÆ½ÐÐËıßÐÎʱ£¬ÇómµÄÖµ£»
¢ÚÁ¬½áOQ¡¢CQ£¬Çó¡÷CQOµÄÍâ½ÓÔ²°ë¾¶µÄ×îСֵ£¬²¢Çó³öµãQµÄ×ø±ê£®
·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£¬¸ù¾ÝÅä·½·¨£¬¿ÉµÃ¶¥µã×ø±ê£»
£¨2£©¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃAPµÄ³¤£¬¸ù¾ÝÏ߶εĺͲ¿ÉµÃPµã×ø±ê£»
£¨3£©¢Ù¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃB¡¢C¡¢DµÄ¹ØÏµ£¬¸ù¾ÝÏ߶εĺͲ¿ÉµÃFCµÄ³¤£¬¸ù¾ÝƽÐÐËıßÐεÄÐÔÖÊ£¬¿ÉµÃCQµÄ³¤£¬¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃFQµÄ³¤£»
¢Ú¸ù¾ÝÈý½ÇÐεÄÍâÐÄÔڱߵĴ¹Ö±Æ½·ÖÏßÉÏ£¬¿ÉµÃMÔÚOCµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬¸ù¾ÝÇÐÏßµÄÐÔÖÊMQ=FN£¬¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃMNµÄ³¤£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©°ÑA£¨-1£¬0£©´úÈëy=x2-bx-3£¬µÃ
1+b-3=0£¬
½âµÃb=2£®
y=x2-2x-3=£¨x-1£©2-4£¬¡àD£¨1£¬-4£©£®
£¨2£©Èçͼ1
£¬
µ±y=0ʱ£¬x2-2x-3=0£¬½âµÃx1=-1£¬x2=3£¬¼´A£¨-1£¬0£©£¬B£¨3£¬0£©£¬D£¨1£¬-4£©£®
Óɹ´¹É¶¨Àí£¬µÃ
BC2=18£¬CD2=1+1=2£¬BD2=22+16=20£¬
BC2+CD2=BD2£¬¡ÏBCD=90¡ã£¬
¢Ùµ±¡÷APC¡÷DCBʱ£¬$\frac{AP}{CD}$=$\frac{CP}{BC}$£¬¼´$\frac{AP}{\sqrt{2}}$=$\frac{3}{3\sqrt{2}}$£¬½âµÃAP=1£¬¼´P£¨0£¬0£©£»
¢Úµ±¡÷ACP¡×¡÷DCBʱ£¬$\frac{AP}{BD}$=$\frac{AC}{CD}$£¬¼´$\frac{AP}{2\sqrt{5}}$=$\frac{\sqrt{10}}{\sqrt{2}}$£¬½âµÃAP=10£¬¼´P¡ä£¨9£¬0£©£¬
×ÛÉÏËùÊö£ºµãPµÄ×ø±ê£¨0£¬0£©£¨9£¬0£©£»
£¨3£©¢ÙÈçͼ2
£¬
ÉèÅ×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚEµã£¬ÔòOE=1£¬DE=4£®
µ±x=0ʱ£¬y=-3£¬¼´C£¨0£¬-3£©£®
µ±y=0ʱ£¬x2-2x-3=0£¬
½âµÃx1=-1£¬x2=3£¬
OB=3£¬OC=3£¬BE=2£®
ÉèÖ±Ïßy=1ÓëyÖá½»ÓÚµãF£¬
CF=4£¬BD=$\sqrt{D{E}^{2}+B{E}^{2}}$=2$\sqrt{5}$£®
µ±ËıßÐÎBQCDÊÇÆ½ÐÐËıßÐÎʱ£¬CQ=BD=2$\sqrt{5}$£¬
¡ßCF=OF+OC=1+3=4£¬
¡àFQ=$\sqrt{C{Q}^{2}-C{F}^{2}}$=2£¬
m=FQ=2£»
¢ÚÈçͼ3
£¬
¼Ç¡÷OQCµÄÍâÐÄΪM£¬ÔòMÔÚOCµÄ´¹Ö±Æ½·ÖÏßMNÉÏ£¨MNÓëyÖá½»ÓëµãN£©£®
¡ßµ±MQÈ¡×îСֵʱ£¬
¡ÑMÓëÖ±Ïßy=1ÏàÇУ¬
MQ=FN=OM=2.5£¬
MN=$\sqrt{O{M}^{2}-O{N}^{2}}$=$\sqrt{2£®{5}^{2}-1£®{5}^{2}}$=2£¬
FQ=MN=2£¬
¡àQ£¨2£¬1£©£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓÃÅä·½·¨Çóº¯ÊýµÄ¶¥µã×ø±ê£»£¨2£©ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖʵóö¹ØÓÚAPµÄ·½³ÌÊǽâÌâ¹Ø¼ü£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£»£¨3£©ÀûÓù´¹É¶¨ÀíµÃ³ö¹ØÓÚFQµÄÖµÊǽâÌâ¹Ø¼ü£®
| A£® | 10 | B£® | 8 | C£® | 6»ò10 | D£® | 8»ò10 |