题目内容

4.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为$\sqrt{10}$.

分析 将△ABM逆时针旋转90°得到△ACF,连接NF,由条件可以得出△NCF为直角三角形,利用勾股定理就可以求出NF,通过证明三角形全等就可以MN=NF,求出NF即可.

解答 解:将△AMB逆时针旋转90°到△ACF,连接NF,
∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,
∵△ABC是等腰直角三角形,AB=AC,
∴∠B=∠ACB=45°,∠BAC=90°,
∵∠MAN=45°,
∴∠NAF=∠1+∠3=∠1+∠2=90°-45°=45°=∠NAF,
在△MAN和△FAN中
$\left\{\begin{array}{l}{AN=AN}\\{∠MAN=∠FAN}\\{AM=AF}\end{array}\right.$
∴△MAN≌△FAN,
∴MN=NF,
∵∠ACF=∠B=45°,∠ACB=45°,
∴∠FCN=90°,
∵CF=BM=1,CN=3,
∴在Rt△CFN中,由勾股定理得:MN=NF=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,
故答案为:$\sqrt{10}$.

点评 本题考查了旋转的性质的运用,勾股定理的运用,全等三角形的判定与性质,能正确作出辅助线是解此题的关键,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网