题目内容
4.分析 将△ABM逆时针旋转90°得到△ACF,连接NF,由条件可以得出△NCF为直角三角形,利用勾股定理就可以求出NF,通过证明三角形全等就可以MN=NF,求出NF即可.
解答 解:将△AMB逆时针旋转90°到△ACF,连接NF,![]()
∴CF=BM,AF=AM,∠B=∠ACF.∠2=∠3,
∵△ABC是等腰直角三角形,AB=AC,
∴∠B=∠ACB=45°,∠BAC=90°,
∵∠MAN=45°,
∴∠NAF=∠1+∠3=∠1+∠2=90°-45°=45°=∠NAF,
在△MAN和△FAN中
$\left\{\begin{array}{l}{AN=AN}\\{∠MAN=∠FAN}\\{AM=AF}\end{array}\right.$
∴△MAN≌△FAN,
∴MN=NF,
∵∠ACF=∠B=45°,∠ACB=45°,
∴∠FCN=90°,
∵CF=BM=1,CN=3,
∴在Rt△CFN中,由勾股定理得:MN=NF=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,
故答案为:$\sqrt{10}$.
点评 本题考查了旋转的性质的运用,勾股定理的运用,全等三角形的判定与性质,能正确作出辅助线是解此题的关键,难度适中.
练习册系列答案
相关题目
14.
七个边长为1的正方形按如图所示的方式放置在平面直角坐标系xOy中,直线l经过点A(4,4)且将这七个正方形的面积分成相等的两部分,则直线l与x轴的交点B的横坐标为( )
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{7}{9}$ |
9.
如图,AB是⊙O的直径,点C在⊙O上,且tan∠ABC=$\frac{1}{2}$,D是⊙O上的一个动点(C,D两点位于直径AB的两侧),连接CD,过点C作CE⊥CD交DB的延长线于点E.若⊙O的半径是$\sqrt{5}$,则线段CE长度的最大值是( )
| A. | 2$\sqrt{5}$ | B. | 5$\sqrt{5}$ | C. | $\frac{16\sqrt{5}}{5}$ | D. | 4$\sqrt{5}$ |
16.
如图,△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )
| A. | 一直减小 | B. | 先减小后增大 | C. | 一直增大 | D. | 先增大后减小 |
13.
如图,将长方形纸片ABCD折叠,使点D与点B重合,折痕为EF.已知AB=6cm,BC=18cm,则Rt△ABE的面积为( )
| A. | 27cm2 | B. | 24cm2 | C. | 22cm2 | D. | 20cm2 |