题目内容

如图,△ABC中,CD是边AB上的高,且CD2=AD•DB,求证:∠ACB=90°.
考点:相似三角形的判定与性质
专题:证明题
分析:利用已知条件易证△ADC∽△CDB,由相似三角形的性质可得∠ACD=∠B,因为∠B+∠DCB=90°,所以∠ACD+∠DCB=90°,即∠ACB=90°.
解答:证明:∵CD是边AB上的高,
∴∠ADC=∠CDB=90°,
∵CD2=AD•DB,
∴CD:AD=BD:CD,
∴△ADC∽△CDB,
∴∠ACD=∠B,
∵∠B+∠DCB=90°,
∴∠ACD+∠DCB=90°,
即∠ACB=90°.
点评:此题考查了相似三角形的判定与性质以及直角三角形的性质.此题难度适中,注意有两角对应相等的三角形相似定理的应用,注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网